Volume 2, Issue 1 (6-2016)                   J Health Res Commun 2016, 2(1): 37-45 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Toolabi A, Allahabadi A, Miri M, Karimi Sani H R. Evaluation of Removal and Adsorption Isotherms of Zinc and Copper from Municipal Solid Waste Leachate Using Clinoptilolite Adsorbent. J Health Res Commun 2016; 2 (1) :37-45
URL: http://jhc.mazums.ac.ir/article-1-142-en.html
PhD Candidate of Environmental Health, Environmental Health Engineering Department, School of Public Health, Yazd University of Medical Sciences, Yazd, Iran
Abstract:   (6233 Views)

Introduction and Purpose: Heavy metals are among the most important pollutants in leachate waste, causing serious health risks for humans through entering the food chain and reaching the top of food pyramid. Therefore, this study aimed to evaluate the efficacy of modified clinoptilolite in the removal of copper and zinc ions from landfill leachate and modeling of adsorption isotherms and reactions.
Methods: This cross-sectional in vitro study was conducted to test waste landfill leachate as a true sample for four seasons in 2014 in Bam, Iran. Natural zeolite (clinoptilolite), modified with 2 M HNO3 solution, was used to remove copper and zinc. Experiments were conducted as batch systems, in which the effects of pH, adsorbent dosage, and contact time on the adsorption of heavy metals in municipal waste landfill leachate by clinoptilolite (as soil amendment) were investigated. Afterwards, the adsorption isotherms of each adsorbent were demonstrated.
Results: In total, the removal efficency of zinc in the optimum pH=5, equallied time=120 min and Adsorbent dosage of 120g/l was reached 92%. Adsorption isotherms indicated that the capacity of this adsorbent was higher in zinc, compared to copper, and adsorbents were absorbed with higher energy. The adsorption process was based on Langmuir’s equations (isotherm type II) (R2=0.99).
Conclusion: According to the results, adsorption capacity of clinoptilolite was high for copper and zinc and based on isotherm equations, adsorption took place with higher energy. It was concluded that this method could be used for the removal of these metals due to its high removal efficiency. Therefore, it is recommended that further studies be conducted to evaluate the possibility of removal of other heavy metals with this method.

Full-Text [PDF 781 kb]   (4304 Downloads)    
Type of Study: Research(Original) | Subject: Environmental Health

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of health research in community

Designed & Developed by : Yektaweb