Volume 8, Issue 1 (Spring 2022)                   J Health Res Commun 2022, 8(1): 27-38 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masoumbeigi H, Gholami F, Yahyapor S A, Ghanizafeh G. Evaluation of Direct and Alternating Current Electrochemical Process using Aluminum and Zinc Electrodes in the Nitrate Removal from Aqueous Solutions. J Health Res Commun 2022; 8 (1) :27-38
URL: http://jhc.mazums.ac.ir/article-1-688-en.html
Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
Abstract:   (1716 Views)
 Introduction and purpose: Nitrate is one of the most important pollutants in surface and groundwater. The present study aimed to evaluate the effect of different parameters on the performance of the electrical coagulation process in the removal of nitrate from contaminated water.
Methods: This study was conducted based on an experimental design and the statistical community was urban water. A cylindrical batch reactor with aluminum and zinc electrodes (monopolar arrangement) was used to remove 100 mg/L nitrates. The experiments were performed three times in direct and alternating currents using standard methods. Factors of pH, contact time, and weight of electrodes were evaluated, and the results were reported in tables and graphs.
Results: Nitrate removal efficiency (87.4%) was higher in direct current, as compared to that in alternating current (39.1%). The highest nitrate removal efficiency of 87.4% was obtained in direct current, in comparison with 61% for alternating current. As the contact time increased, the pH of the solution increased in two currents, from 7 to 11.21 and 8.47, respectively. Total dissolved solids (TDS) at optimal conditions in alternating and direct current were 79 and 126 mg/L, respectively. After 30 min of settling, the produced sludge was measured as 17.66 and 280 mL/L in direct and alternating current, respectively. The weight of the anode electrode had the greatest decrease in direct current.
Conclusion: The results of this study pointed out that the process of electrical coagulation could reduce the concentration of nitrate to less than the standard. Nitrate removal with the direct current was performed with less energy consumption and cost than alternating current. As a result, the use of optimal conditions increases the process efficiency in the electrochemical removal of nitrate.
Full-Text [PDF 1483 kb]   (868 Downloads)    
Type of Study: Research(Original) | Subject: Environmental Health

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of health research in community

Designed & Developed by : Yektaweb